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A grand ensemble Monte Carlo investigation of the Bell 
lattice model for water 
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Parsonage 
Department of Chemistry, Imperial College, London SW7 ZAY, UK 

Received 23 November 1983 

Abstract. The lattice model for water, previously investigated by Bell using a Guggenheim- 
McGlashan first-order type of approximation (FOA), has been examined at three reduced 
temperatures T* = ( k T /  w )  = 0.2 ,  0.5 and 0.9 using grand ensemble Monte Carlo simula- 
tions. The parameters of the model are E ,  w, U associated with first-neighbour energies, 
a hydrogen bond increment to  this, and a ‘penalty’ incurred by molecules in triad sets on 
the two intertwined cubic ice lattices of the model. These parameters were given values 
suggested to be optimum by Bell ( E /  w = 2.0, U /  w = 1.25). 

Our results indicate that the cooperativity of the model is significantly underestimated 
by the FOA, although the general behaviour of the model is correctly represented. 

We have also made a preliminary examination of the possibility of introducing values 
of E ,  w and U into the model which are directly related to H,O dimer potentials, rather 
than being estimated a posteriori from thermodynamic criteria. It is shown that this approach 
is feasible and that the advantage of extremely rapid calculation offered by the lattice 
model would not be lost. 

1. Introduction 

Of the possible statistical mechanical models for water, lattice models have attracted 
considerable attention. Their appeal lies in their ability to represent the properties of 
the fluid in a relatively simple way, based on the idea of a predominantly hydrogen- 
bonded network as the essential feature of aqueous phases, in which cubic ice, I ( c ) ,  
is used as a framework for the representation of this structure. This type of model has 
been used as a starting point by various authors (Bell 1972, Weres and Rice 1972, 
Fleming and Gibbs 1974, O’Reilly 1973) who developed it along different lines. For 
example, Weres and Rice and O’Reilly concentrated attention mainly on vibrational 
properties, using in the one case a cell model, and in the other a scaled particle 
approach. Weres and Rice argued for the superiority of the lattice type of model over 
those postulating micro structures of different densities, and of any model requiring 
an appreciable proportion of non-hydrogen- bonded molecules. 

Bell, following the suggestion made by Bernal and Fowler (1933), emphasised the 
potential inherent in such a model to explain the well known density maximum and 
compressibility minimum of liquid water near the melting temperature. In the model 
which he proposed, the molecules can occupy sites on two intertwined cubic ice 
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(diamond) sublattices. In the open structure only one of these sublattices is occupied, 
but increased thermal motion above the melting temperature causes breakdown of the 
I (  c) lattice and higher-density packing becomes possible in which sites on both 
sublattices can be occupied. 

Originally Bell and Lavis (1970) demonstrated, using a two-dimensional model of 
this type, that a density anomaly could be found. Subsequently Bell developed a 
three-dimensional model, and used the first-order or Guggenheim-McGlashan treat- 
ment to calculate thermodynamic properties. The success of the model against 
qualitative criteria has led to its subsequent developments in other directions by Bell 
and co-workers (Bell and Salt 1976, Wilson and Bell 1978, Lavis and Christou 1977, 
1979). The model was characterised by three parameters: - E ,  the interaction between 
non-hydrogen-bonded molecules, - w, the increment in energy when hydrogen bonding 
occurs, and U which is described by Bell as a ‘penalty’ for molecules in triads with two 
adjacent occupied sites on one sublattice and the third molecule occupying a neighbour- 
ing site on the other sublattice. Every group of three molecules having this close-packed 
arrangement increases the energy of the system by u / 3 ,  the triad energy. Bell showed 
that, subject to certain constraints on these three quantities, the observed density 
maximum and compressibility minimum are found; corresponding, at least qualitatively, 
to the behaviour of the real fluid. The optimum values for the pair of quantities ( E /  w, 
U /  w) were found to be (2,  2 )  by comparison with experiment. Weres and Rice, in 
their critical appraisal of the Bell model, express reservations about the use of the 
parameter U which they believed contributed an unrealistically large positive term to 
the free energies of less dense structures. On the other hand their cell theory, in which 
the modified BNS potential was used, did not give density compressibility anomalies, 
a fact which they concede to be worrying. 

The lattice model has other weaknesses in the form developed by Bell and co- 
workers; it does not for example take into account vibration of the bonds and makes 
no allowance for interaction beyond the next-nearest neighbours. The first deficiency 
means that distribution functions can only be obtained as a set of delta functions, while 
the importance of the second deficiency is not easy to judge unless calculations which 
include larger-range interaction are carried out. In addition to these limitations there 
is uncertainty surrounding the validity of low-order approximations, whilst approxima- 
tions of higher order are very difficult to obtain, especially in the more complex type 
of lattice model under discussion. In particular, as we show here, the cooperative 
nature of the transition may be incorrectly represented at the level of approximation 
used by Bell. 

It is possible to remove this last-mentioned limitation by resorting to computer 
simulation which, in principle, gives an exact treatment of the statistical mechanics. 
Although simulations of aqueous systems have mostly been of the continuous (i.e. 
non-lattice) type, an advantage to be considered in using the lattice approach, other 
than the one so far discussed, of gaining an estimate of the validity of low-order 
approximations, is the speed with which calculations can be carried out compared with 
continuous models. Thus our own work has shown a 600-fold reduction in computing 
costs, using the kind of algorithm described below, making it feasible, for example, to 
cover wide areas of a phase diagram. Again, given this advantage, it is of considerable 
interest to discover just which features of the properties of real systems can be 
reproduced with model calculations of this type. 

In this paper we compare simulations of the model with calculations using the FOA 

and with the properties of real water. The FOA model is outlined in 0 2 and the 
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simulation method in 0 3. The results are discussed in 0 4 where it is suggested that 
a significant improvement could be effected by introducing new interaction parameters. 

2. Calculations using the first-order approximation 

2.1. The model 

The methods developed by Bell and co-workers have been discussed in detail in the 
papers cited above. Here we give a brief resume of the model and method of calculation, 
and describe some new results which are of relevance to the present work. 

In the Bell model, the water molecules are distributed over the sites of a BCC 
lattice. Each molecule has four bonding arms which point to the vertices of a regular 
tetrahedron; two of these arms lie along the OH direction and the other two are 
associated with lone pairs. For each molecule, there are 12 possible orientations as 
illustrated in figure 1. The numbering of these orientations, although significant in 
later sections, is arbitrary. First-neighbour sites for any molecule lie at the corners of 
the surrounding cube, and first neighbours interact with an energy - E  if non hydrogen 
bonded, and - ( E  + w )  if hydrogen bonded. 

Each site is surrounded by six second-neighbour sites lying at the centres of 
surrounding cubes. Any triad of molecules involving a second-neighbour pair with a 
common first-neighbour contributes a repulsive energy term u/3. A pair of second- 
neighbour sites share four common first-neighbour sites, and it follows that if all these 
six sites are occupied the total repulsive term will be 4u/3.  It can be shown (Bell 
1972) that these triad contributions ensure that the I ( c )  or open structure will have 
the lowest free energy provided that 

& < 2 U <  W + & .  (2.1) 
Bell decomposed the lattice into ten tetrahedra containing two second neighbours and 
two shared first neighbours. It is to be noted that this decomposition omits all the 
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second neighbours which lie in pairs along one axis and consequently underestimates 
the number of triads by a factor of three which has to be compensated for in the FOA 
calculations. 

2.2. The first-order approximation 

The configurational free energy, fc, is calculated as a function of the temperature T, 
the probability Vi of the ith tetrahedral site grouping, its degeneracy U,, and the 
fractional occupation (or density) p ( p  =+ for the I ( c ) ,  open structure). The last three 
quantities satisfy the equations 

10 

w , ~ 1 = 1 ,  
, = I  

where ni is the number of molecules in the ith tetrahedral group. The lattice degeneracy 
g is obtained by the Guggenheim-McGlashan method, to give a random distribution 
at T = m ,  and after eliminating two 9, terms between the above equations, the 
remainder can be determined by minimising fc with respect to each in turn and solving 
the resulting equations. In the original calculations the equations were solved at 
constant pressure. Here we have preferred to work with constant temperature and to 
vary the density p. This has the advantage of avoiding difficulties with multiple roots, 
and leads more easily to results which can be compared with simulation data, for which 
pressure cannot be obtained, since the variation of potential energy with position has 
no meaning in a lattice calculation. 

The starting point was Bell’s equation (3.16), 

p / ( l - p ) =  O(r)/+(r)  (2.4) 
in which 6, 4 are 3rd- and 4th-order polynomials of the parameter r=(V8/V4)1’2 
and the coefficients can be expressed in terms of exp( -~ /2kT) ,  exp(-w/2kT) and 
exp(-u/ kT) .  O(r)/4( r) increases monotonically with r, and (2.4) gives solutions for 
r at given values of p, T. From r, the individual Y j  terms for the tetrahedral groupings 
can be found using the equation (cf Bell 1972, equations (3.14) and (3.12)) 

V I  = rni  exp[-( u + 2~ + E ,  + E* - 2 ~ , + $ n , (  E ~ -  E ~ ) / ~ T ] /  6( r) (2.5) 

in which E, is the energy of the ith tetrahedral grouping as given in table 1 of Bell’s paper. 

pvO= kT In {[1-p]3e(r)/p}+5u (2.6) 

The pressure p is given by 

where u0 is the volume per site. The configurational energy per molecule is 

and the compressibility K is given by 

k r K /  W V ~  = 4(4et- e 4 ’ ) / e ( m y +  44 i -240 t1  (2.8) 

where the primes denote differentiation with respect to r. 
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Finally the chemical potential is 

p = 3 kT ln[12 r4’3( 1 - p ) / p ] +  8 u  - 2 w - 6 ~  + kT ln(A3/u,) (2.9) 

in which the first two terms comprise the configurational chemical potential p c ,  and 
the final term is the kinetic part of p, with A = h/ (27rmkT)”*  and U, the volume 
available to the centres of the molecules. Since a great deal of uncertainty attaches 
to U,, the properties of the system are discussed as functions of pc in what follows. 

The mean number (n,)  of first neighbours ( j  = l ) ,  second neighbours ( j  = 2 )  and 
hydrogen bonds ( j  = B) is given by 

( n j )  = k, 1 u , q i n ! ” / p  

where n:’) is the number with property j in the ith tetrahedral group, and kj = (2 ,3 ,2)  
for j = ( 1 , 2 , B ) .  

3. Computer simulation of the Bell model 

In the model, water molecules can occupy sites on a BCC lattice, while in the computer 
program these are represented by positions on two intertwined simple cubic lattices 
A and B, displaced one from the other by the vector ( a / 2 ,  a / 2 ,  a / 2 )  so that one 
corner of each cube lies at the body centred site of the other, as shown in figure 2 
with the sites on each sublattice labelled as indicated. 

A * )  k r l  

B ~ , j ,  k r l  

0 

I I  

Figure 2. 

In the program the possible orientations of a molecule shown in figure 1 are stored 
as the integers 1 to 12 with 0 representing an unoccupied site. First-neighbour sites 
lie at opposite ends of the four diagonals of a cube. These diagonals we number 
anticlockwise, 1 to 4 on the top face of the cube, beginning at the front right-hand 
vertex (they will also of course be similarly numbered on the bottom face, beginning 
with the back left-hand vertex). We assign an integer k3  to each diagonal and consider 
the combination of this with the integers kl, k2 which are already assigned to the 
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molecules at either end of the diagonal, according to their orientations. With the 
conventions described, hydrogen bonding exists if and only if the conditions given in 
table 1 are fulfilled for k , ,  k2 ,  k3 .  

Table 1. 

k,= and k 2 E  and k ,  E 

or 

The simulation box contained 6 x 6 x 6 = 216 sites for the open I (  c) lattice, 
equivalent to a total of 432 for the fully occupied dense lattice, and the usual periodic 
boundary conditions were imposed. The I ( c )  structure can only exist if the number 
of sites in a given direction is even. New configurations were generated in four 
different ways by calling the subroutines MOVE, ROTATE, CREATE, or DESTROY 
in a random sequence but with equal frequency (although in fact this constraint is only 
essential for CREATE and DESTROY). MOVE attempts to move a molecule to a 
vacant first-neighbour position without change of orientation; in ROTATE only the 
orientation was changed. CREATE and DESTROY attempt to place or remove 
molecules in randomly chosen vacant or occupied sites respectively. In canonical 
ensemble simulations, only the first two of the above subroutines are used. All 
molecules in the ice I (  c) structure on the same A or B sublattice of figure 2 will have 
the same parity (odd or even) for i + j + k .  By monitoring this parity during the 
simulation, it is possible to gain an indication of the presence of the I ( c )  structure. 
Thus, if we define the ordered quadruplet of fractional occupations within the four 
odd and even sublattices as (Alo ,  A le ,  B/o ,  B/e) ,  then a perfect I ( c )  structure would 
be ( l ,O,  l,O), (1 ,0 ,0 ,  l ) ,  (0 ,1 ,1 ,0)  or (0 ,1 ,0 ,  l ) ,  a uniform phase (such as ice VI11 
where p =  1) would have ( p , p , p , p ) ,  and a cage structure would be indicated by 
(a ,  b, a, b )  or (a ,  b, b, a )  where either a is close to 1.00 and b is small or vice versa. 

In a typical run a total of 8.5 X lo5 trials were sampled after initially discarding 
2 X lo5 trials. In addition to the sublattice quantities already mentioned, specific heats 
and mean dipoles were also collected and averaged. In most cases convergence was 
good to excellent, as judged by the variation of quantities averaged over every 2 x lo4 
trials. 

In most runs the initial configuration, expressed as occupation of the four sublattices 
specified above, was (108,11,11,108). A few runs were initiated from completely 
full or nearly empty lattices, especially in the vicinity of a transition. It was observed 
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that nearly empty lattices often failed to fill up to the final densities found from the 
more dense initial configurations. This apparent hysteresis can be explained in terms 
of the importance of cluster formation in these water-like systems. This was demon- 
strated in the following way: a nearly empty initial configuration was run for a few 
thousand steps without allowing creation or destruction, then run for the same number 
of creation/destruction steps, and subsequently in the normal way with all four trials 
sampled at random. The same final density was found as that reached from :he standard 
initial configuration. Clearly the initial stage of moves and rotations had permitted a 
stable nucleus to form from which a hydrogen-bonded network could grow. By 
judicious use of alternative starting configurations, we believe therefore that a true 
representation of the equilibrium properties of the model has been obtained. 

In order to compare simulation data with the first-order approximation (FOA) the 
parameters ( E / w ,  u / w )  were chosen as (2 ,5/4) ,  which were found by Bell (1972) to 
give good qualitative agreement between the FOA and experimental behaviour. Simula- 
tions were carried out at T*(=  kT/  w )  = 0.2, 0.5 and 0.9 for a range of chemical 
potentials. 

It was not possible to obtain reliable data at much lower temperature. This is 
because there is no adjustable quantity in a lattice simulation which corresponds to 
step length in the continuous case. At low temperatures therefore, the acceptance 
probability term, proportional to exp(-AE/ k T ) ,  becomes very small. 

4. Results 

4.1.  The first-order approximation 

For comparison with simulation data it was necessary to obtain graphs of p against kc 
rather than p against T* as previously calculated by Bell. 

A set of curves covering a wide temperature range (T*  = 0.05 to 1.5) is shown in 
figure 3. In this and subsequent figures, the chemical potential is expressed in units 
of kT.  It can be seen that, in general, there are two transition regions; one from low 
density to p =0.5 ( I ( c ) ) ,  and the second from densities rather above this value to 

-1 0 -8 -6 -4 -2 0 
Pc 

Figure 3. Graph of p against pc, for a range of temperatures T*. Curve A :  T* = 1.50; 
B :  r*= 1.20: c :  r*=o.90; D :  r*=o.so; E :  r*=o.o5; F:  r * = o . i o ;  G :  r*=o.20. 
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p = 1.0. The first stage is clearly discernible at  all temperatures, but the second stage 
only at the lowest temperature. Information about the nature of the transition was 
found by plotting pvo against pc (Hill 1960). When the transition is of low order this 
gives two curves of different slope, linked by a non-physical region of negative 
compressibility. The point of intersection of these lines gives the exact p and p, values for 
the transition. These curves showed a continuous change of slope associated with the 
low-density transition for T* > 1.20 and a sharp intersection at temperatures below 
T* = 1.20. ThisisconsistentwithBell'sestimateforthecritical temperatureof T* = 1.35 
in the FOA. The high-density transition was found to be a continuous one down to 
T* = 0.05. 

It should be noted that the temperature dependence of the transition would be 
changed bytheinclusionof the kT (In A3/ U,) termappearingin (2.9). Since both U, andits 
dependence on T are unknown there are considerable uncertainties in attempting to 
include this term, which would in any case obscure our main objectives of comparing the 
Monte Carlo (MC) calculations with the FOA, and examining trends in various ensemble 
averages. Suffice it to say that when reasonable assumptions are applied to U,, the expected 
trend, in which the chemical potential for transition increases with T, is obtained. 

4.2. Monte Carlo calculations 

The transitions occurring in the grand ensemble MC calculations are exhibited by the 
specific heat curves (figure 4), each of which has two sharp maxima corresponding to 
a high-density transition (HDT) and low-density transition (LDT). These transition 
points are summarised in table 2. 

-6 -4  -2 0 
P: 

Figure 4. Specific heat curves, for ( a )  T*=0.9, ( b )  T* = O S ,  ( c )  T* =0.2. 

Table 2. 

0.2 -3.7s -7.0 -5.49 
0.5 -5.75 -6.3 -5.86 
0.9 -3.0 -6.0 -6.98 
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The curves of density against )(L, are shown in figure 5 where they are compared 
with p-pc curves for the FOA. It is clear that at the two lowest temperatures, these 
points represent low-order transitions from the dense phase to the I ( c )  phase, and 
from the I ( c )  phase to a rarefied one. At T* = 0.9 the A feature in the specific heat 
curve is noticeably displaced to higher chemical potential and there is no sharp change 
in density which corresponds to this. There are some indications that the A feature 
at pc = -3.75 occurs as a function of temperature at around T* = 0.4, but this cannot 
be confirmed without further calculations. 

-8 -6 - 4  -2 -8 -6  -4 -2 
!Jc !J[ 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

P 

Figure 5. Graphs of p against p ,  for MC calculations 
-8 -6 -4  -2 (full curves) and the FOA (broken curves). ( a )  T* = 

0.2, ( b )  T*=0.5, ( c )  T*=0.9. Pc 

The transitions in the corresponding FOA density curves are decidedly less distinct 
at these temperatures. However, figure 3 shows that very similar behaviour to that 
exhibited at T* = 0.2 is found in the FOA, at around T* = 0.05, and that the more 
gradual changes at the two higher temperatures are quite similar to those found in 
the FOA at T* = 0.10 and T* = 0.15/0.2. Furthermore the same trend can be seen in 
the values of p, for the LDT, which increases with increasing temperature from -5.9 
to -5.5 over this range, as do the values given in table 2 for the MC calculations. 
Similarly the HDT transition from the FOA appears to be first order for T* S 0.1 and 
occurs at pc = -4.0. 

Thus it appears that reasonable qualitative agreement between the FOA and MC 
calculations could be obtained if temperatures for the former were to be scaled up, 
but quantitative agreement could not then be achieved by a similar adjustment of 
chemical potential. Corresponding qualitative similarities have been noted for the 
other properties calculated here (Whitehouse 1983). 

This observation can be readily understood in terms of the increased cooperativity 
of the present calculations in comparison with the FOA which acts in favour of the 
intermediate structure, as compared with the adjacent states in which the first and 
second lattices respectively are only partly occupied. 
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In figure 6 the trends in numbers of first neighbours, NT, second neighbours, NT, 
and hydrogen bonds, N g ,  are shown normalised with respect to their maximum values 
of 8, 6 and 4 respectively. These curves are best discussed in conjunction with those 
showing fractional occupation of the sublattices in figure 7 .  Only very small differences 
were found in the occupation of the pairs (A/o,  B/e)  and (Ale ,  B / o )  and these are 
therefore shown as single curves in the latter figure. 

0 . 2  I 
0 

-1 - 6  -5 -4  -3  - 2  
Pc 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

0 z 

-1 - 6  - 5  -4  -3 -2 
li‘ 

1 .o 

0.8 

0.6 

0.4 

0.2 

0 

0 z 

-1 - 6  - 5  -4  -3 - 2  
l i r  

Figure 6. Numbers of first neighbours NT (circles), 
second neighbours NT (triangles) and hydrogen 
bonds NT, (crosses) plotted against pc .  ( a )  T* = 0.2, 
( b )  T*=0.5,  ( c )  T*=0.9. 

1.0 

0.8 

0.6 

0.4 

0.2 

P 

-5 -4 Pc - 3  - 2  

- 6  - 5  - 4  -3  -2  
l i c  

1.0 

0.8 

0.6 

0.4 

0.2 

0 

Figure 7. Density in the first sublattice (circles) and 
second sublattice (triangles) ( a )  T* =0.2,  ( b )  
T* = 0.5, ( c )  T* = 0.9. 



MC investigation of Bell lattice model for water 1681 

At the lowest temperature studied, T* =0.2, the behaviour of NT and N: is very 
clear cut, with sharp transitions in NT at pLDT and p H D T  and a sharp transition in Nf 
at pHDT. Sublattice occupations are mainly (0 ,  0}, {1,0} and { 1 , l )  indicating uniform 
gas, I ( c )  and ice-VI1 phases respectively. The slight deviation of N ;  from unity around 
the transitions is due to the build up of interstitial concentrations within the cage of 
the I ( c )  lattice. 

At T* = 0.5, this feature becomes much more clearly marked. It can be seen most 
distinctly in the curve for NT, where it is notable that the full complement of hydrogen 
bonds is never achieved. But it is also indicated by the gradual increase in Nf from 
p = -6 onwards, and in the switch from sublattice occupancies of {1,0}, characterising 
a uniform I ( c )  phase, through a non-uniform intermediate region to uniform (1, l }  
occupancy above pc = -2. 

At the highest temperature, T* = 0.9, where there is no clear transition in density, 
some features which nevertheless correspond to a change of phase are still to be found. 
Thus, although NT and Nf both change continuously above pLDT, there is a strong 
minimum in NT,. The switch to an interstitial/cage structure is even more clearly 
signalled, and it is apparent that the interstitials are not strongly hydrogen-bonded in 
this region. It is reasonable to interpret this behaviour as that of a dense fluid rather 
than attribute it to solid phases. 

4.3. Comparison with real water 

In order to compare the p-pc curves with those for real water (see e.g. Cooper and 
LeFevre 1969) it is necessary to account for the term ln(A3/v,) in (2.9). Alternatively 
we may assume that the low to medium density transition occurs at the same value of 
p in the MC calculations as it does in real water, and estimate ut. It was found that 
the ‘vibration length’ ( = ( u , ) ” ~ )  available to the centre of a molecule is of the order 
of 0.03 A,  which although small is not unreasonable. However, the rise in density 
with p above the transition appeared to be more rapid in real water than in the model, 
suggesting that the model may be too cooperative. 

One obvious shortcoming in the approach followed here is the difficulty in relating 
the energy parameters E ,  w and U to what is known about the interaction potential 
between water molecules., In particular, it is hard to  justify the introduction of a 
positive triad energy (U) on this basis, even though this stabilises the I( c) open structure 
which is clearly an important requirement. Both FOA and MC calculations carried out 
with U = 0 but retaining E /  w = 2 at T* = 0.2 and 0.5 respectively resulted in direct 
transitions from zero density to unity, confirming this expectation. 

However, if we examine the interaction potential energy which would be expected 
in the lattice model from a typical H 2 0  interaction potential, a new possibility emerges. 
Calculations based on the density of ice show that a typical nearest-neighbour separation 
would be in the region of 2.8 A,  similar to that for liquid water (see e.g. Impey et a1 
1981 and references therein). At this separation, nearest neighbours are well within 
the repulsive region of the dispersion part of the interaction. In the present model 
this corresponds to a positive value for E and a larger negative value for w. The polarised 
electropole model of Barnes et a1 (1979) for example leads to E /  w = -0.155. 

MC calculations carried out using the pair (-0.155,O) do in fact lead to stable I ( c )  
structures and to rather better agreement with experiment (Whitehouse 1983). In 
the FOA, on the other hand, the model is not improved by this choice of parameters, 
suggesting that the full cooperation of the present calculations plays a vital role. It is 
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to be noted that this new choice of parameters is of course consistent with the criterion 
of equation (2.1). 

Preliminary calculations of interaction energies in this model, using the ST2 poten- 
tial (seee.g. Impey etal1981),show that theattractivesecond-neighbourenergycan beas 
high as 5 of the hydrogen-bond energy for first neighbours. Such interactions would be 
expected to greatly reduce the emphasis which the original model places on the I ( c )  
structure. 

5. Conclusion 

Comparison of the MC simulation with the FOA makes it clear that the latter seriously 
underestimates the importance of cooperative effects within the model. When these 
are fully accounted for, the I ( c ) ( p  = f) phase tends to be stabilised at the expense of 
the adjacent low- and high-density phases, and consequently melting to a fluid-like 
phase occurs at a higher temperature. A change from a uniform-density phase to a 
cage plus interstitial structure, in the vicinity of the transition from open structure to 
ice VI1 (the HDT), is clearly shown by many of the quantities examined in the 
simulations. It is this aspect of the model which enables it to account for the density 
and compressibility anomalies shown by real water. It is encouraging that the increased 
cooperativity which can be achieved in the computer simulations does not lead to the 
disappearance of this property. 

It seems probable from the preliminary work described in 0 4.3 of this paper that 
a model which is more consistent with H 2 0  dimer potentials could be constructed and 
investigated using MC lattice methods. Furthermore it appears feasible to improve the 
model along these lines without sacrificing the advantages of extremely rapid calculation. 
We hope to report further explorations of this kind in the future. 
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